Kernel Estimation: the Equivalent Spline Smoothing Method
نویسندگان
چکیده
منابع مشابه
Derivation of Equivalent Kernel for General Spline Smoothing: a Systematic Approach
We consider ®rst the spline smoothing nonparametric estimation with variable smoothing parameter and arbitrary design density function and show that the corresponding equivalent kernel can be approximated by the Green function of a certain linear differential operator. Furthermore, we propose to use the standard (in applied mathematics and engineering) method for asymptotic solution of linear d...
متن کاملSmoothing Spline Density Estimation : Conditional Distribution
This article extends recent developments in penalized likelihood probability density estimation to the estimation of conditional densities on generic domains. Positivity and unity constraints for a probability density are enforced through a one-to-one logistic conditional density transform made possible by term trimming in an ANOVA decomposition of multivariate functions. The construction of mo...
متن کاملSmoothing Spline Estimation of Variance Functions
This article considers spline smoothing of variance functions. We focus on selection of smoothing parameters and develop three direct data-driven methods: unbiased risk (UBR), generalized approximate cross validation (GACV) and generalized maximum likelihood (GML). In addition to guaranteed convergence, simulations show that these direct methods perform better than existing indirect UBR, genera...
متن کاملSpline-backfitted kernel smoothing of partially linear additive model
A spline-backfitted kernel smoothing method is proposed for partially linear additive model. Under assumptions of stationarity and geometric mixing, the proposed function and parameter estimators are oracally efficient and fast to compute. Such superior properties are achieved by applying to the data spline smoothing and kernel smoothing consecutively. Simulation experiments with both moderate ...
متن کاملEfficient and fast spline-backfitted kernel smoothing of additive models
A great deal of effort has been devoted to the inference of additive model in the last decade. Among existing procedures, the kernel type are too costly to implement for high dimensions or large sample sizes, while the spline type provide no asymptotic distribution or uniform convergence. We propose a one step backfitting estimator of the component function in an additive regression model, usin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SSRN Electronic Journal
سال: 1994
ISSN: 1556-5068
DOI: 10.2139/ssrn.3656316